Generalizing the Role of Determinization in Probabilistic Planning
نویسندگان
چکیده
The stochastic shortest path problem (SSP) is a highly expressive model for probabilistic planning. The computational hardness of SSPs has sparked interest in determinization-based planners that can quickly solve large problems. However, existing methods employ a simplistic approach to determinization. In particular, they ignore the possibility of tailoring the determinization to the specific characteristics of the target domain. In this work we examine this question, by showing that learning a good determinization for a planning domain can be done efficiently and can improve performance. Moreover, we show how to directly incorporate probabilistic reasoning into the planning problem when a good determinization is not sufficient by itself. Based on these insights, we introduce a planner, FF-LAO*, that outperforms stateof-the-art probabilistic planners on several wellknown competition benchmarks.
منابع مشابه
A Polynomial All Outcome Determinization for Probabilistic Planning
Most predominant approaches in probabilistic planning utilize techniques from the more thoroughly investigated field of classical planning by determinizing the problem at hand. In this paper, we present a method to map probabilistic operators to an equivalent set of probabilistic operators in a novel normal form, requiring polynomial time and space. From this, we directly derive a determinizati...
متن کاملImproving Determinization in Hindsight for On-line Probabilistic Planning
Recently, ‘determinization in hindsight’ has enjoyed surprising success in on-line probabilistic planning. This technique evaluates the actions available in the current state by using non-probabilistic planning in deterministic approximations of the original domain. Although the approach has proven itself effective in many challenging domains, it is computationally very expensive. In this paper...
متن کاملExtending Classical Planning Heuristics to Probabilistic Planning with Dead-Ends
Recent domain-determinization techniques have been very successful in many probabilistic planning problems. We claim that traditional heuristic MDP algorithms have been unsuccessful due mostly to the lack of efficient heuristics in structured domains. Previous attempts like mGPT used classical planning heuristics to an all-outcome determinization of MDPs without discount factor ; yet, discounte...
متن کاملTrajectory-Based Short-Sighted Probabilistic Planning
Probabilistic planning captures the uncertainty of plan execution by probabilistically modeling the effects of actions in the environment, and therefore the probability of reaching different states from a given state and action. In order to compute a solution for a probabilistic planning problem, planners need to manage the uncertainty associated with the different paths from the initial state ...
متن کاملProbabilistic Planning via Determinization in Hindsight
This paper investigates hindsight optimization as an approach for leveraging the significant advances in deterministic planning for action selection in probabilistic domains. Hindsight optimization is an online technique that evaluates the onestep-reachable states by sampling future outcomes to generate multiple non-stationary deterministic planning problems which can then be solved using searc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1705.07381 شماره
صفحات -
تاریخ انتشار 2017